منابع مشابه
Existence for a Degenerate Cauchy Problem
We prove the existence of a solution to the degenerate parabolic Cauchy problem with a possibly unbounded Radon measure as an initial data. To accomplish this, we establish a priori estimates and derive a compactness result. We also show that the result is optimal in the Euclidian setting.
متن کاملExistence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملExistence of Solutions for a Degenerate Seawater Intrusion Problem
We study a seawater intrusion problem in a confined aquifer. This process can be formulated as a coupled system of partial differential equations which includes an elliptic and a degenerate parabolic equation. Existence results of weak solutions, under realistic assumptions, are established through time discretization combined with parabolic regularization.
متن کاملMonodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: manuscripta mathematica
سال: 2008
ISSN: 0025-2611,1432-1785
DOI: 10.1007/s00229-008-0232-5